Roles of ubiquitin in endoplasmic reticulum-associated protein degradation (ERAD).

نویسنده

  • Veit Goder
چکیده

In the secretory pathway, quality control for the correct folding of proteins is largely occurring in the endoplasmic reticulum (ER), at the earliest possible stage and in an environment where early folding intermediates mix with terminally misfolded species. An elaborate cellular mechanism aims at dividing the former from the latter and promotes the selective transport of misfolded species back into the cytosol, a step called retrotranslocation. During retrotranslocation proteins will become ubiquitinated on the cytosolic side of the ER membrane by dedicated machineries and will be targeted to the proteasome for degradation. The entire process, from protein recognition to final degradation, has been named ER-associated protein degradation, or simply ERAD. Ubiquitin has well known functions in aiding late steps of substrate retrotranslocation and in targeting substrates to the proteasome. Recent results show that several cytosolic machineries allow ubiquitinated substrates to undergo extensive remodeling, or processing, on their poly-ubiquitin chains (PUCs). Although still ill-defined, PUC processing might have a unique function for ERAD in that it might provide a mechanism to generate optimal PUCs for recognition by proteasomal ubiquitin receptors. Ubiquitination might also have a previously unanticipated role in quality control of ER membrane proteins. This review recapitulates the current knowledge and recent findings about ERAD-specific roles of ubiquitin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation

All seven lysine residues in ubiquitin contribute to the synthesis of polyubiquitin chains on protein substrates. Whereas K48-linked chains are well established as mediators of proteasomal degradation, and K63-linked chains act in nonproteolytic events, the roles of unconventional polyubiquitin chains linked through K6, K11, K27, K29, or K33 are not well understood. Here, we report that the unc...

متن کامل

Conserved endoplasmic reticulum-associated degradation system to eliminate mutated receptor-like kinases in Arabidopsis.

Endoplasmic reticulum (ER)-associated degradation (ERAD) is an integral part of the ER quality-control system that removes toxic misfolded proteins via ubiquitin/proteasome-mediated degradation. Most of our knowledge on ERAD comes from biochemical and genetic studies in yeast and mammalian cells. Although ERAD is known to operate in plant cells, little is known about its molecular components an...

متن کامل

Ubiquitin-Specific Protease 25 Functions in Endoplasmic Reticulum-Associated Degradation

Endoplasmic Reticulum (ER)-associated degradation (ERAD) discards abnormal proteins synthesized in the ER. Through coordinated actions of ERAD components, misfolded/anomalous proteins are recognized, ubiquitinated, extracted from the ER and ultimately delivered to the proteasome for degradation. It is not well understood how ubiquitination of ERAD substrates is regulated. Here, we present evide...

متن کامل

Molecular functions of the ubiquitin domain protein Herp in Synoviolin mediated endoplasmic reticulum associated protein degradation (ERAD)

.......................................................................................................................................4 ZUSAMMENFASSUNG ......................................................................................................................5

متن کامل

The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron

Aberrant endoplasmic reticulum (ER) proteins are eliminated by ER-associated degradation (ERAD). This process involves protein retrotranslocation into the cytosol, ubiquitylation, and proteasomal degradation. ERAD substrates are classified into three categories based on the location of their degradation signal/degron: ERAD-L (lumen), ERAD-M (membrane), and ERAD-C (cytosol) substrates. In Saccha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current protein & peptide science

دوره 13 5  شماره 

صفحات  -

تاریخ انتشار 2012